The Cosmological Revolution

Cosmology: The Science of the Evolution and Structure of the Universe (Shorter Oxford Dictionary)

Katrin Heitmann, Theoretical Divis

Picture of the M78 Nebula Taken by the Sloan Digital Sky Survey

Astronomical Units

Distance Measure: Parsec

- $1 \text{ pc} \approx 3.086 \times 10^{13} \text{km} \approx 3.26 \text{ light years}, 1,000,000 \text{ pc} = 1 \text{ Mpc}$
- Separation of Stars in a Galaxy $\approx 1~\mathrm{pc}$
- Separation of Bright Galaxies $\approx 1 \text{ Mpc}$
- Size of the Observable Universe: $\approx 4500 \text{ Mpc}$

Velocity Measure: km/s

Typical Velocities of Galaxies: Hundreds of km/s

Mass Measure: Solar Mass

 $1 \mathrm{~M}_{\odot} \approx 1.99 \times 10^{30} \mathrm{~kg}$, Typical Galaxy $\approx 10^{11} \mathrm{~M}_{\odot}$

Questions...

- How Big is the Universe?
- What is the Geometry of the Universe?
- How Old is the Universe?
- What is the Universe Made of?
- How are the Constituents Distributed?
- What is the History of the Universe?

Observations

Observations: Photons

The Electromagentic Spectrum

The Universe at Different Wavelengths

... and Theory

Main Theoretical Ingredient: General Relativity

1915: Einstein Develops General Relativity
Prediction: All of Space is Dynamic,
either Contracting or Expanding
Einstein Puzzled!

Slipher, Astronomer at the Lowell Observatory, ⇒ Nebulae are moving away from Earth! Finds them to be Redshifted Measures Spectra of Nebulae

The Cosmological Redshift

- Distance between Us and Galaxies is increasing
- Reason: Creation of Space -> General Relativity
- ⇒ Wavelength Gets Stretched!
- ⇒ Measured Light from Distant Galaxies is Redshifted!

The Universe is Expanding!

1923: Hubble Starts Measurements

1929: Publication of Distance Measurements

 \Rightarrow Galaxy Redshifts Increase Linearly

With Distance from Earth!

⇒ The Farther a Galaxy is Away from Us
the Faster it Moves Away from Us

The Expanding Universe...

Imagine a Ballon Filled With Galaxies...

Blow Up the Ballon...

Time Reverse: The Universe is Contracting!

- ⇒ Universe Gets Denser and Hotter
- \Rightarrow Primordial Fireball
- ⇒ BIG BANG!

Travel Back in Time and Space

Traces of the Primordial Fireball?

Early Universe: Very Dense and Very Hot

1946: Gamow Postulates Remnant Blackbody Radiation Left Over from Big Bang $\approx 5 \mathrm{K}$

1965: Discovery of the Cosmic Microwave Background by Penzias and Wilson

2.725 K CMBR: The Perfect Black Body Radiation

From CMB to Large Scale Structure

- Temperature Across the Sky Extremly Uniform
- Present Day Universe NOT Uniform
- There must have been Small Initial Fluctuations, which were Amplified by Gravity

Problems for Naive Big Bang:

- Where do Initial Fluctuations Come from?
- Why did the Universe Not Collapse Immediatly after the Big Bang?
- \Rightarrow Inflation

The Cosmological Revolution

What Can We Learn from CMB Observations?

• What are the Constituents of the Universe?

All Baryons? ⇒ Fluctuations Would be 10 - 100 Times Larger! Need: Form of Energy which Interacts only Gravitationally

 \Rightarrow Dark Matter!

What is the Geometry of the Universe?

The Cosmological Revolution

Flat Space

a + b + c = 180

curvature = 0

Hyperbolic space

curvature = negativea+b+c < 180

The Geometry of the Universe - Measured by WMAP

Formation of Large Scale Structure

- CMB Anisotropy is due to Small Fluctuations in Density
- Gravity is Attractive!

Large Scale Structure Formation

Due to Nature of Gravitational Instability

 \Rightarrow Formation of Filaments and Pancakes Filaments Join up \Rightarrow Clusters Form

 \Rightarrow Formation of the Cosmic Web

Zel'dovich Develops Theory of the Formation of Large Scale Structure Can We Test and Observe this?

The Cosmic Web

A Cluster Simulation

Large Scale Structure Surveys

Effective sizes of z-surveys

The Sloan Digital Sky Survey

Evidence for Dark Matter I: Rotation Curve

Rotation Curve of a Disk Galaxy:

Plot of the Rotational Velocity v(r) of a Test Particle at a Distance r from the Center of a Distant Galaxy

Evidence for Dark Matter II: Gravitational Lensing

Dark Matter Candidates

- Massive Compact Halo Objects (MACHOS)
- Weak Interacting Massive Particles (WIMPS)
- WIMPZILLAS
- Neutrinos
- Black Holes
- Supersymmetric Particles
- •

The Dark Energy Puzzle

Type Ia Supernovae Appear dimmer than Expected

 \Rightarrow Dark Energy!

Changes of the Rate of the Expansion over Time

Our Current Picture of the Make-Up of the Universe

The Future

- New and Ongoing Experiments
- Microwave Ba keround: Planck (2007
- AP (2007)
- Sloan Digital Sky Survey (2005)

- ark Matter
- Formation of StructureFormation of the First Stars

